Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; : e202300468, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494870

RESUMO

Real-time prediction about the severity of noncommunicable diseases like cancers is a boon for early diagnosis and timely cure. Optical techniques due to their minimally invasive nature provide better alternatives in this context than the conventional techniques. The present study talks about a standalone, field portable smartphone-based device which can classify different grades of cervical cancer on the basis of the spectral differences captured in their intrinsic fluorescence spectra with the help of AI/ML technique. In this study, a total number of 75 patients and volunteers, from hospitals at different geographical locations of India, have been tested and classified with this device. A classification approach employing a hybrid mutual information long short-term memory model has been applied to categorize various subject groups, resulting in an average accuracy, specificity, and sensitivity of 96.56%, 96.76%, and 94.37%, respectively using 10-fold cross-validation. This exploratory study demonstrates the potential of combining smartphone-based technology with fluorescence spectroscopy and artificial intelligence as a diagnostic screening approach which could enhance the detection and screening of cervical cancer.

2.
Appl Opt ; 62(25): 6826-6834, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706817

RESUMO

Cervical cancer can be treated and cured if diagnosed at an early stage. Optical devices, developed on smartphone-based platforms, are being tested for this purpose as they are cost-effective, robust, and field portable, showing good efficiency compared to the existing commercial devices. This study reports on the applicability of a 3D printed smartphone-based spectroscopic device (3D-SSD) for the early diagnosis of cervical cancer. The proposed device has the ability to evaluate intrinsic fluorescence (IF) from the collected polarized fluorescence (PF) and elastic-scattering (ES) spectra from cervical tissue samples of different grades. IF spectra of 30 cervical tissue samples have been analyzed and classified using a combination of principal component analysis (PCA) and random forest (RF)-based multi-class classification algorithm with an overall accuracy above 90%. The usage of smartphone for image collection, spectral data analysis, and display makes this device a potential contender for use in clinics as a regular screening tool.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Algoritmo Florestas Aleatórias , Smartphone , Espectrometria de Fluorescência , Algoritmos
3.
Sci Rep ; 12(1): 11192, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778460

RESUMO

Fluorescence spectroscopy has the potential to identify discriminatory signatures, crucial for early diagnosis of cervical cancer. We demonstrate here the design, fabrication and testing of a 3D printed smartphone based spectroscopic device. Polarized fluorescence and elastic scattering spectra are captured through the device using a 405 nm laser and a white LED source respectively. The device has been calibrated by comparison of spectra of standard fluorophores (Flavin adenine dinucleotide, fluorescein, rhodamine, and porphyrin) with the corresponding spectra collected from a commercial spectrometer. A few cervical tissue spectra have also been captured for proof of its applicability as a portable, standalone device for the collection of intrinsic fluorescence spectra from human cervix.


Assuntos
Colo do Útero , Neoplasias do Colo do Útero , Colo do Útero/química , Feminino , Humanos , Impressão Tridimensional , Smartphone , Espectrometria de Fluorescência/métodos , Neoplasias do Colo do Útero/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...